Robust Performance Hypothesis Testing with the Variance
نویسندگان
چکیده
Applied researchers often test for the difference of the variance of two investment strategies; in particular, when the investment strategies under consideration aim to implement the global minimum variance portfolio. A popular tool to this end is the F -test for the equality of variances. Unfortunately, this test is not valid when the returns are correlated, have tails heavier than the normal distribution, or are of time series nature. Instead, we propose the use of robust inference methods. In particular, we suggest to construct a studentized time series bootstrap confidence interval for the ratio of the two variances and to declare the two variances different if the value one is not contained in the obtained interval. This approach has the advantage that one can simply resample from the observed data as opposed to some null-restricted data. A simulation study demonstrates the improved finite-sample performance compared to existing methods.
منابع مشابه
LINEAR HYPOTHESIS TESTING USING DLR METRIC
Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...
متن کاملTESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE
This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...
متن کاملHypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates.
Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles (i.e., a percentile profile) yields an estimate of the location a...
متن کاملTesting the Exactitude of Estimation Methods in the Presence of Outliers: An accounting for Robust Kriging
Estimation of gold reserves and resources has been of interest to mining engineers and geologists for ages. The existence of outlier values shows the economic part of the deposits subject to the fact that don’t depend on the human or technical errors. The presence of these high values causes a pseudo dramatically increment in variance estimation of economical blocks when applying conventional m...
متن کاملRobust tests for testing the parameters of a normal population
This article aims to provide a simple robust method to test the parameters of a normal population by using the new diagnostic tool called the “Forward Search” (FS) method. The most commonly used procedures to test the mean and variance of a normal distribution are Student’s t test and Chi-square test, respectively. These tests suffer from the presence of outliers. We introduce the FS version of...
متن کاملMeasuring Hospital Performance Using Mortality Rates: An Alternative to the RAMR
Background The risk-adjusted mortality rate (RAMR) is used widely by healthcare agencies to evaluate hospital performance. The RAMR is insensitive to case volume and requires a confidence interval for proper interpretation, which results in a hypothesis testing framework. Unfamiliarity with hypothesis testing can lead to erroneous interpretations by the public and other stakeholders. We argue t...
متن کامل